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Additional Practice Final #1

This  additional  practice  final  is  an  actual  CS103 final  exam from a  previous  quarter.   The 
structure of this exam is not the same as the structure of the upcoming final exam, but the sorts 
of questions on it are similar to what you might expect to see on the actual exam.

This practice final is not worth any extra credit points, but should be a good resource to help 
you prepare for the exam.

Enjoy!

FINITE AUTOMATA

1. (5 points)  Let L be the following language:   L = { awa | w  {a, b}* } .  Show by drawing an∈  
NFA that L* is regular.  Your NFA should have no more than three states.

2. (5 points)  Draw the transition diagram for a two-state NFA that accepts (ab | a)*.  

3. (5 points)  In our definition of a DFA as M = (Q, Σ, δ, q0, F), δ is the transition function.  We 
could define an extended transition function as follows:

δ* : Q × Σ* → Q where  δ*(q, w) is the state that M is in after starting in state q and processing 
all the symbols in the string w.

Use δ* to complete the following definitions of the strings that are accepted and not accepted by 
M:

L(M) = { w |                                                                                }

L(M) = { w |                                                                                }
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REGULAR EXPRESSIONS and REGULAR LANGUAGES

4. (12 points)  There are three parts to this question.  Answer each with T or F.

(a)  If w is any string, then wR denotes the reverse of w.  If L is any language, then LR denotes the 
language consisting of the reverses of all strings in L.

True or false: If L is any language, then the language LLR = {wwR | w belongs to L}.

[There was some confusion on this question.  What we are asking is whether the formula in 
brackets correctly describes the language LLR .  Note that if A and B are languages,
AB = {xy | x  A and y  B}.]∈ ∈

Answer: ________

(b)  True or false: Every NFA can be converted to an equivalent one that has a single accepting 
state.

Answer: ________

(c)  True or false:  For every three regular expressions, R, S, and T, the languages denoted by 
(R | S)*T* and R*T* | S*T* are the same.

Answer: ________

5. (15 points)  Write a regular expression for the set of strings that consist of alternating 0’s and 
1’s.  We consider the empty string and the string 0 and the string 1 to be members of this 
language.  For example, the following are some of the strings in the language: ε, 0, 1, 01010101, 
10, 101.
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CONTEXT-FREE LANGUAGES

6. (13 points)  Show that the following language is ambiguous, then construct an unambiguous 
grammar that yields the same language.

S → AB | aaB
A → a | Aa
B → b

7. (15 points)  Use the Pumping Lemma to show that L = {anban for n ≥ 0} is not regular.  We 
have laid out the proof for you, so all you have to do is fill in the blank spots.

The proof is by contradiction.  Assume that L is _________________.  Let p be the pumping 
length for L as given by the pumping lemma.

Consider the string w = ________________. 

Clearly, w belongs to L, because ________________________________________. 

By the Pumping Lemma, we can write w = xyz where |xy| ≤ p, |y| > 0, and 
(the rest of the proof goes here)

Thus, we have a contradiction, and L is not regular.

TURING MACHINES/UNDECIDABILITY

8. (15 points)  Show that the language 
HALL = { M  | M is a Turing machine that halts on Σ*}⟨ ⟩

is not decidable, by reduction from HALTTM.
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NP-COMPLETENESS

9. (15 points)  Assume that we have a polynomial-time algorithm for determining whether a 
formula is satisfiable, (By the Cook-Levin theorem on page 272, we are effectively assuming 
that P = NP).  So given a formula, our algorithm will output in polynomial time “yes” if the  
given formula is satisfiable, and “no” otherwise.  However, the algorithm does not generate a 
specific assignment for each variable in the formula that satisfies it (it only tells us whether the 
formula can be satisfied).  Explain how you could use our algorithm to generate a satisfying 
assignment for a given formula in polynomial time.  (Hint: Can you think of a way to find the  
assignment bit-by-bit?)


